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Leadership structure of the collaboration: This project is structured as a Center (which will be 
referred to as ‘ThermChem-FW’ Center) an assembly of three spatiotemporal levels, each 
capturing different length and timescales for the purpose of developing an integrated 
computational model to predict first wall/blanket performance. Each level will have a designated 
coordinator to manage level-specific research tasks and facilitate communication between 
levels. Marian (UCLA) will act as executive project director, supervising and coordinating all 
research activities by interacting directly with level coordinators. Trelewicz (Stony Brook) will 
serve as deputy director and coordinator for Level 1 (materials properties at the atomic scale), 
which in addition includes Szlufarska (Wisconsin), Cereceda (Villanova), Cusentino and Sargsyan 
(SNL), and Setyawan (PNNL). Level 2 (microstructural evolution) will be coordinated by Marian 
(UCLA) and includes Po (Miami) and Humrickhosue (ORNL). Finally, Level 3 (device 
thermomechanical response simulations) will be coordinated by Permann (INL) and also includes 
Spencer (INL) and Bernholdt (ORNL). Specific project members will also be designated to act as 
liaisons between the different levels, ensuring information flow and useful feedback in both 
directions. The project is thus built around teams that blend materials scientists with applied 
mathematicians, merging their expertises to maximize synergisms and provide joint solutions to 
each technical challenge.  
 
Description of each collaborating institution’s facilities, equipment, and resources: All 
participating institutions will utilize a flexible computing approach, combining software 
development and testing on local institutional computational resources with large-scale runs on 
DOE leadership-class architectures through the INCITE program. Details about these 
computational facilities are provided in Appendix 2 of this proposal.  
 
Training and mentoring of students and junior researchers by the collaborators: We will 
make student training and workforce development in fusion energy materials and in theory, 
modeling and simulation one of the top priorities in this project. Among all the participating 
institutions, this proposal calls for the involvement of a total of 8 graduate students and 7 
postdoctoral researchers at any given time in the various project activities. The work of all junior 
personnel (students and postdocs) will be guided and monitored by the proposal co-PIs on a 
weekly basis. The duration of a postdoctoral term at most institutions is expected to last no more 
than two years, and thus we expect to have multiple hiring cycles for the duration of this project. 
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1. Background/Introduction 
The first wall and the plasma-facing components of the divertor are the first line of defense 
protecting the integrity of a magnetic fusion energy (MFE) reactor against the extremely harsh 
conditions of heat flux, neutron irradiation, thermal gradients, and tritium buildup and retention 
expected during device operation. The current lack of facilities to test materials and reactor 
components under representative fusion reactor conditions calls for the development of accurate 
numerical models capable of predicting the performance limits of materials and components 
under steady-state operation and transient events. While several first wall and divertor concepts 
are under consideration by the MFE community [1-7], those based on tungsten as an armor 
material are the most promising in terms of withstanding operational heat fluxes under long-
pulse conditions (100s of seconds) required for a fusion pilot plant (FPP). In the first wall, tungsten 
is bonded to the tritium-breeding blanket of the reactor, which is generally supported by a He-
cooled substructure made of a fusion-grade steel (such as a reduced-activation 
ferritic/martensitic, or ‘RAFM’, steel) enclosing the breeding element. In liquid breeders, the 
structural RAFM is protected by SiC flow channel inserts that also act as a tritium permeation 
barrier. In the divertor, the tungsten monoblock design has become the leading candidate for 
demonstration reactors and involves a tungsten armor block bonded to a fusion-grade copper 
alloy (such as Cu-Cr-Zr or ‘CCZ’) cooled by either helium (US concepts) or water (international 
concepts) [4,8-11]. Safe and reliable operation of an FPP requires a detailed understanding of 
the thermomechanical loads in these structures under operation so that accurate component 
lifetime limits can be established.  
 

Thermomechanical modeling fusion reactor structures is extremely challenging. In the 
ThermChem-FW Center, we will focus on the first wall/blanket (FW/B) structure, with the divertor 
potentially becoming the focus of future proposal renewals. As noted above, the FW/B element 
involves several material systems performing distinct functions and separated by multiple 
interfaces. Integrated models must therefore consider (i) a large database of material properties, 
(ii) a wide geometric design space, (iii) processes governed by very disparate spatiotemporal 
scales, and (iv) a complex dynamic evolution resulting from the interplay of various operational 
variables, often affecting one another in intricate and nonlinear ways. Despite important efforts 
[12-19], the fusion community still lacks accurate models that capture the full thermomechanical 
response of the FW/B structure dynamically, i.e., as a function of reactor operational time 
(subsequently also referred to as ‘burnup’, ‘dose’, or ‘fluence’). This time dependence emerges 
from two main materials aspects. First, a varying chemical and isotopic composition and gas 
atom buildup directly related to neutron transmutation. Second, microstructural evolution 
occurring as a response to severe operational conditions such as high temperatures, neutron 
irradiation, mechanical loads, and a complex internal chemistry (including corrosion) [20,21]. 
These processes include hardening, swelling, thermal and irradiation-induced creep, 
embrittlement due to the buildup of gaseous and solid transmutants, and grain growth and 
recrystallization. 

2. Project Objectives 
The framework described above represents a new paradigm where fundamental material 
properties, microstructure-property relations, and component-level thermomechanical behavior 
cannot be accurately assessed solely based on ‘zero-point’ considerations (i.e., time-fixed 
starting assumptions). We propose to address this knowledge gap by developing large-scale 
computational methodologies bridging the scales over which fundamental material property 
changes take place —at the atomic level— with where macroscopic-level evaluations can be 
made —at the component scale—, all within the context of realistic fusion operation conditions.  
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This undertaking constitutes an effort of grand challenge proportions, where both existing and 
new simulation techniques must be expanded and developed to accurately capture this complex 
time-evolving picture. At the same time, appropriate numerical and computational tools must go 
hand-in-hand to (i) expand the applicability of material models to device-representative 
geometries consisting of millions of degrees of freedom, and (ii) propagate uncertainties from 
the atomic scale up to microstructural and component-level models so that useful lifetime and 
failure estimates can be quantitatively defined.  
In short, the main objective of this proposal is to develop an integrated computational model 
linking the materials physics scale with the component-level scale to simulate the 
thermomechanical response of the FW/B structure during operation conditions representative of 
FPP concepts. 
In association with the above technical goals, workforce development by training graduate 
students and postdoctoral researchers in the fields of computational materials science and 
applied math applied to fusion energy will also be a priority objective of this proposal. 

3. Proposed Research and Methods 
3.1 Technical project structure 
The materials physics scale must capture property changes due to nuclear transmutation and 
irradiation damage, and an evolving microstructure due to the onset of incubation phenomena 
such as swelling, creep, and recrystallization. To link these physics with the component-level 
response, we propose a three-level breakdown of the spatiotemporal scales of the system, each 
one addressed by scale-relevant computational modeling and applied mathematics tools. Levels 
are connected to one another by bi-directional information channels passing data, codes, and 
uncertainties in the model predictions.  

1. Level 1 captures atomic-level physical processes reflective of fusion reactor operation in the 
FW/B structure, such as (i) transmutation, primary knock-on atoms (PKA) distributions, (ii) 
cascade damage, (iii) interactions of defect clusters, and (iv) tritium uptake, trapping, and 
diffusion.  

2. Level 2 operates at mesoscopic scales where microstructural evolution occurs, including 
irradiation hardening, irradiation creep and swelling, thermal fatigue, precipitation, 
recrystallization (grain growth), and tritium permeation and retention. Uncertainties passed 
from Level 1 will be incorporated into model predictions to define confidence intervals and 
boundaries.  

3. Level 3 involves time-dependent simulations using the finite element method (FEM) of the 
thermomechanical evolution of the full FW/B structure. These models will capture the entire 
geometric complexity and diversity of the multi-material FW/B and will furnish component 
lifetime prediction and design recommendations based on stress distributions and material 
property degradation. Uncertainties passed from Level 2 will be incorporated into model 
predictions to define confidence intervals and boundaries. 

The novel developments proposed here with respect to standard thermomechanical 
performance and design codes include: for Level 1, time-dependent PKA energy distributions, 
cascade damage, and defect cluster structures due to isotopic inventory evolution from 
transmutation; for Level 2, microstructural evolution models formulated to reflect the time-
dependent nature of fusion reactor operation (i.e., accounting for changes in defect 
concentrations, dislocation densities, grain sizes, and grain boundary sink efficiencies); for Level 
3, the introduction of time-changing material constants and reduced parameter descriptions of 
materials evolution into component-level simulations with full spatial and temporal resolution. 
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Figure 1: Management structure of the project, showcasing the subdivision of tasks into three levels: 
‘Level 1’ (bottom level) will furnish fundamental material properties as a function of ‘burnup’; ‘Level 2’ 

(intermediate level) captures microstructural evolution at mesoscales and provides constitutive relations; 
the boundary value problem is represented by ‘Level 3’ (component level, continuum scale), which yields 

the overall thermomechanical response of the device. The figure also shows the different personnel 
ascribed to each level and their interconnectivity, which has been designed to facilitate flexibility and 

adapt quickly to changes in project direction due to new information or unexpected difficulties.
A diagram describing the technical structure of the project is given in Figure 1 (the management 
structure, also included, is discussed in Section 4.1). The figure shows the integration among 
the three scale levels, indicating the tools, processes, and co-PI expertise. It is important to 
emphasize that the main novelty of this proposal will be the development of physics-based, time-
dependent capabilities and their integration into thermomechanical evolution models. As will be 
discussed in Section 3.5, we will explore three simulation scenarios: (i) the FEM simulations 
(Level 3) will directly run microstructural submodels (Level 2) at the nodal level simultaneously 
using suitably designed libraries parametrized and verified by physics simulations at Level 1; (ii) 
FEM simulations will run physics-based constitutive models (based on Levels 1 and 2), 
developed independently, and (iii) using neural networks to subsume complex multidimensional
state variable dependences into reduced-order models that can be run on the fly. Validation, 
while challenging, will be sought at the level of each individual model task before it is marked as 
ready to be passed to and/or used in higher-level models.
3.2 Reference component geometry
In this proposal, we consider a reference design for the first wall building block as a test bed for 
our material models using standard dimensions published in other studies. In ThermChem-FW,
we will consider the geometry shown in Figure 2, which is representative of the FW/B design in 
reactor concepts that will bridge ITER with a future FPP, i.e., such as DEMO and FNSF (Fusion 
Nuclear Science Facility). The figure shows the frontal element of a liquid-metal breeding blanket 
concept, from the plasma edge to the breeding module just before the support backplates. This 
design consists of a thin W armor plate bonded to a structural RAFM steel that supports the flow 
channel insert through which liquid Li-Pb flows. The steel structure is actively cooled by He 
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channels flowing through its front side, as indicated in the figure. As a representative RAFM 
material, we will first focus on F82H [22], with consideration of other alloys in later stages of the 
proposal as discussed in subsequent sections.

Figure 2: Schematic geometry of the reference FW design considered for the material models in this 
proposal. The figure represents a first wall frontal section containing the breeding element.

While this geometry is typical of concepts being considered by the MFE community, we 
emphasize that the focus in this proposal is not to endorse or validate this or any other specific 
first wall/blanket designs, but to develop advanced simulation methodologies that could be used 
for design optimization and comparing performance predictions among different designs for 
selection purposes.
3.2.1 Neutronics calculations (Task 1.0)
A previously developed model of the FNSF plasma source and geometry [23] will be used with 
existing parametric geometry tools to create a neutronics model of the reference component 
geometry using MCNP6.2 [24] and DAGMC [25]. These codes will be used to compute the 
volumetric heat generation rate, volumetric tritium production rate, and neutron flux and energy 
spectrum, tallied directly on an unstructured finite element mesh. The latter information will be 
passed to the FISPACT-II code [26,27] to compute transmutation product inventories as a 
function of time and radiation damage rates (discussed in Section 3.1.1).

3.3 Level 1: Time-dependent material properties from atomistic scales
The focus of the research at the atomistic level is to build a fundamental understanding of the 
atomic-scale mechanisms driving property changes of first wall materials over time due to the 
combined effects of radiation damage and transmutation. The task flow for the Level 1 activities 
is outlined in Figure 3. The different activities are organized into three main thrusts (colored in 
blue, orange, and red), which are described in detail in the sections that follow.
3.3.1 Transmutation rates and PKA energy spectra (Task 1.1)
During transmutation, nuclear reactions take place that alter the nuclide composition over time. 
Given the guiding FSNF blanket configuration shown in Figure 2, we will consider the most 
important transmutants in each material, i.e., Re and Os in W [28]; H, He, and Mn in the RAFM
steel [29], and He and Mg in SiC [30,31]. 
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Figure 3: Overarching task flow and technical milestones for Level 1 atomistic scale modeling combining 
FISPACT-II, SPECTRA-PKA, FitSNAP, DFT, and MD codes with BTE modeling for thermal properties.  
Uncertainty quantification will be incorporated within ML-IAP and propagated through MD simulations.

Our approach to understanding how the W, RAFM, and SiC materials evolve their chemical 
composition over time is to use the FISPACT-II inventory code with the latest TALYS-based 
Evaluated Nuclear Data Libraries [32]. We will numerically solve the set of coupled differential 
equations that describe the rate of change of all possible nuclides and thus evolve the nuclide 
composition in time [33]. Members of the ThermChem-FW team have experience executing
these calculations [34], as exemplified in Figure 4a for W under DEMO-FW conditions.

Figure 4: (a) 
Transmutation of 
W after 10 years 
of continuous 
exposure to 
DEMO 
conditions [34]. 
(b)  PKA 
distributions for 
pure Fe under 
DEMO FW 
conditions [26].

The results of the inventory codes will provide a detailed sequence of the time evolution of 
nuclide concentrations in the three candidate materials under the expected conditions of FNSF. 
This evolving chemistry will also be used to update the underlying primary knock-on atom (PKA) 
energy distributions. For this purpose, we will employ the SPECTRA-PKA code [35,36], which 
combines neutron spectra with nuclear recoil data from nuclear data libraries to produce PKA 
spectra for any material composition. The expected outcome is a calculated database of the 
initial primary disruptions in W, RAFM, and SiC with information about the type, energy, and 
spatial distribution of the PKA. Such information, as shown in Figure 4b for pure Fe also under 
DEMO FW conditions [26], will be used to inform upper-level modeling within this project to 
investigate cascades with full atomistic interactions.
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3.3.2 Machine learned interatomic potentials and uncertainty quantification (Task 1.2) 

Within the multiscale hierarchy proposed in this work, it is critical to have access to highly 
accurate atomistic models to reduce error propagation into the higher length scale models.  
Classical potentials are often not transferable to conditions beyond what they were fit for, notably 
in far-from-equilibrium conditions such as in the FW/B. Recently, a new class of machine learning 
interatomic potentials (ML-IAP) [37-40] has emerged that are trained to large datasets of density 
functional theory (DFT) calculations, allowing for quantum accuracy with MD scalability [41]. One 
such ML-IAP, the Spectral Neighbor Analysis Potential (SNAP) [40], has been successfully used 
for materials [42-44] in fusion relevant scenarios (e.g., Be and He implantation at the plasma-
material interface of a tungsten divertor [45-47).  Recent updates to the fitting software, FitSNAP 
[48], allow for even more options and flexibility in fitting more complex models such as Atomic 
Cluster Expansion (ACE) descriptors [49] for treating each n-body term as a separate basis 
expansion allowing for tailoring of the different bonding descriptors. Additional models for 
magnetism [50] are available in LAMMPS [51] and can be coupled with SNAP [52] for including 
magnetic effects. This will be especially important for developing Fe-Cr ML-IAP, as magnetic 
effects may be important during reactor operation. To arrive at IAP predictions with quantified 
uncertainties, members of the ThermChem-FW team have recently implemented FitSNAP 
solvers, i.e., fitting procedures, that rely on Bayesian regression with embedded model error 
estimation [53] leading to SNAP ML-IAPs with augmented uncertainties. UQ enables variance 
decomposition based global sensitivity analysis (i.e., allowing extraction of descriptor 
importance indices), active learning (i.e., selection of DFT training sets to maximize the efficiency 
of ML-IAP construction), as well as uncertainty propagation when SNAP ML-IAPs are fed into 
MD simulations. Additional solvers, like high-capacity neural networks (NNs), are also now part 
of the FitSNAP package. Unlike linear or quadratic SNAP forms, UQ tools with NN-based ML-
IAPs are less mature, largely relying on empirical sampling methods for assessing uncertainties. 
In cases where such ML-IAP forms are necessary, we will rely on our recent work and in-house 
software [54], bridging state-of-the-art UQ tools and empirical methods to reliably arrive at NN-
based ML-IAP uncertainty estimation. 
In this project, the ThermChem-FW team 
will develop a set of ML-IAP for FW/B 
materials with a focus on capturing the 
effects of transmutation on defect diffusion 
and trapping, and in the values of the 
elastic constants and thermal conductivity. 
This will be achieved by developing 
specific ML-IAP for W-Re-Os, SiC-Mg, and 
Fe-Cr-Mn/He with the latter system 
incorporating magnetic contributions, 
which represent a current gap for modeling 
radiation effects in Fe-Cr. A set of DFT 
training data will first need to be developed 
that includes configurations relevant to the 
application such as defect structures, 
elastically strained unit cells, high 
temperature DFT-MD, etc. The general procedure is summarized in Figure 5. DFT simulations 
described in subsequent sections for each material system free of transmutation species will be 
leveraged as training data.  Potentials will be optimized to reproduce key material properties like 
defect formation energies and elastic constants. Initially, SNAP with linear regression will be 

Figure 5: ML-IAP development employing DFT 
reference data and active learning with ML loop 
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employed with magnetic models incorporated for Fe-Cr; NN-SNAP or ACE can also be used as 
needed. With SNAP, well-established UQ tools such as polynomial chaos (PC) expansions [55] 
will be implemented to describe input parameter uncertainties from UQ-SNAP solvers and 
propagated through MD simulations.  Overparameterized models, such as neural networks, may 
not be amenable to PC treatment and will be supplemented by standard Monte-Carlo UQ.  
Potentials will be optimized using the genetic algorithm capability within the Dakota software, 
which has been used for previous SNAP development with predefined material properties 
targeted as optimization parameters. The UQ-augmented ML-IAP will be validated against DFT 
and/or literature data using established metrics for probability density function comparison in 
case data comes with uncertainty estimation or likelihood functions if reference values are given 
as point estimates.  We will use judiciously selected ML-IAP samples from UQ-FitSNAP solvers 
to perform MD simulations to predict the effect of transmutation on defect transport, elastic 
constants, thermal properties. 
3.3.3 Cascade damage and defect energetics (Task 1.3) 

Defect production as a function of evolving chemistry and microstructure due to neutron 
irradiation serves as a critical input to the microstructural scale modeling and necessitates a 
mechanistic understanding of the atomistic scale defect characteristics and energetics [56-60]. 
An evolving internal chemical composition has been shown to influence both the numbers of 
primary cascade defects as well as their type and size distribution. MD studies have indicated 
that the composition of defect clusters under a changing chemical inventory is typically different 
from the composition of the material. For example, in W-5%Re, the interstitial clusters typically 
contain ~10% Re [61]. In SiC, interstitial clusters contain ~80% C [62], while significant 
enrichment of Cr is observed in the interstitial clusters in Fe-Cr [63]. 
 

In this task, we will study the effect of evolving chemistry on defect production due to changing 
PKA energy distributions. First, we will continually update the PKA energy distributions as a 
function of the concentration of the transmutation products to be included for each material (see 
Section 3.1.1). Suitable damage functions that relate the number of defects to the PKA energy 
will be constructed and updated as a function of burnup as well [36]. Then, a selected set of 
cascades with the different PKA types in each material will be simulated via MD using LAMMPS 
with the corresponding ML-IAP. From these simulations, we will generate three to five datasets 
of cascades to cover the expected range of composition (likely a few atomic %), with additional 
datasets generated as needed.  Combined with the cascade simulations will be the calculation 
of defect formation energies using DFT considering point defects and defect clusters in the 
presence of transmutation products as a function of concentration and compared with the 
energetics from MD to verify the accuracy of the ML-IAP while also providing input to the active 
learning loop. 
 

For the calculations of defect kinetics in the presence of transmutation impurities, we will treat 
the single crystal case as a representation of intragranular behavior since grain boundaries serve 
as sinks for defects.  The main migrating defects that will be evaluated will include 
monovacancies, H (and T), He, He clusters, self-interstitial atoms (SIAs), SIA clusters, and solid 
transmutation products. For point defects and simple clusters, DFT will be used to compute the 
migration energies using the climbing nudged elastic band method [64]. The attempt frequencies 
in the diffusion prefactors will be calculated using harmonic transition state theory. Zero-point-
energy corrections will be considered for light isotopes, such as H and T. For extended defects, 
the diffusion coefficients will be derived from Arrhenius plots obtained from MD or kMC 
simulations [65]. We will employ parallel replica and/or other accelerated MD (AMD) techniques 
for slowly diffusing species (e.g., as previously performed by ThermChem-FW team members to 
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determine the mobility of small interstitial clusters in SiC [66]). A nuance for SiC is the charged 
nature of the defects, which necessitate consideration of the most stable charge state and the 
dependence of the Fermi level on transmutation impurities. The Fermi level in SiC will be 
determined as a function of concentration for the dominant transmutation products.  
Literature data (e.g., W [67,68], Fe-Cr [69-71], SiC [72-75]) will be combined with calculations 
using the ML-IAP to map the migration kinetics and the effects of the solid transmutation 
products as well as other defects influenced by shifts in local chemistry. Even where data is 
available based on empirical potentials, the ML-IAPs can improve upon the accuracy of these 
datasets (as, e.g., in the diffusion coefficients of He clusters in W [76]  and Fe [77]). Existing data 
on vacancy migration typically does not consider the effect of transmutation, which will be 
addressed in this task via MD to derive the effective diffusion coefficients of monovacancies as 
a function concentration. In the dilute limit, DFT can also be used to compute vacancy diffusion 
in the presence of substitutional solutes (likewise vacancy-mediated solute diffusion) by using a 
multiple-jump-frequency model [78]. We will also compute the diffusion kinetics of intrinsic and 
transmutant interstitial defects. In W and Fe-Cr, interstitial solutes are most stable in a mixed 
dumbbell configuration, which migrates via translation and rotation [79,80]. While the rotation 
barrier for mixed dumbbells is usually known, that of SIA clusters especially in the presence of 
solute is less understood.  Our study will therefore compute the rotation kinetics for SIA clusters 
in W and Fe using ML-IAP.  
For defect trapping, we will consider SIA and vacancy clusters and their binding to transmutation 
products. Our team has experience doing these calculations for the binding of defects to fission 
products (i.e., Ag, Cs, O, and I) in SiC [81]. The energy landscape of defect clusters can be 
complex and, in some cases, identifying clusters with the lowest energies can be 
computationally challenging. To address this issue, a genetic algorithm will be implemented to 
optimize structures in SiC, bcc Fe, and bcc Fe-Cr alloys [82]. We will leverage those results and 
extend the methods to identify stable clusters in the presence of transmutation products.  
Additionally, special consideration will be given to He, which aggregates to form gas bubbles in 
the lattice or at grain boundaries. In particular, here we will focus on the accumulation of He in 
the lattice, both in W and Fe [83-88], where bubbles can adopt various geometric shapes which 
determine their stability [89-91]. Here, literature data will be leveraged in conjunction with high-
temperature MD simulations of different He/V ratios and different initial structures that include 
the presence of transmutation products. An important outcome of this thrust will be the 
calculation of bubble energies as a function of bubble size and He/V ratio, which will be used to 
extract binding energies of He, vacancies, and transmutation products to the bubbles.  
3.3.4 Evolution of thermal-mechanical properties with transmutation (Task 1.4) 

Thermal conductivities, elastic constants, and coefficients of thermal expansion (CTE) are 
essential properties for fusion component design and can be significantly altered by the 
combined effects of radiation damage and transmutation products [92,93]. In this task, coupled 
DFT, MD, and Boltzmann Transport Equation (BTE) modeling will be leveraged in concert to 
estimate changes in the thermal conductivities and elastic constants as a function of evolving 
chemistry due to transmutation. 
Thermal conductivities ( ): These will be calculated following an ab-initio-informed semiempirical 
approach developed by members of the ThermChem-FW team. The approach has already been 
demonstrated for metallic uranium fuels [94-97] and provides accurate models with limited 
experimental data and significant insights into the physics of various electron- and phonon-
scattering mechanisms.  To begin, we will assume a single-phase element or alloy with known 
electrical/thermal conductivity data and crystal structures for DFT calculations. In the DFT-BTE 
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approach, DFT calculations are used to calculate the structural, electronic, and vibrational 
properties while BTE modeling calculates transport properties such as electrical/thermal 
conductivity, based on inputs from the DFT calculations. Parameters that are difficult to obtain 
accurately from DFT, such as electronic and phonon relaxation times, are modeled via either 
semi-classical physics formulae or empirical fitting and categorized according to the different 
electron- and phonon-scattering processes involved. For general single-phase materials, we can 
write the thermal conductivity, , in the non-radiative transport regime as sum of the electronic 
thermal conductivity, , and phonon thermal conductivity, , and then use the Wiedemann-
Franz law, BTE, and Matthiessen’s rule [98] to obtain the relations:        

         (1) 

where  is the Lorenz number, is the wavevector, λ is a specific phonon branch,  is the total 
number of discrete k-points,  is the volume of the unit cell, and ,  and are  the heat 
capacity, phonon group velocity, and phonon relaxation time for each wavevector  and phonon 
branch λ, respectively.  includes the effect of scattering processes with other phonons, 
electrons, point defects, grain boundaries, or dislocations, all of which can be obtained using 
DFT calculations [99-101]. The electron and phonon BTE calculations will be performed using 
the BoltzTraP [101] and Phono3py [102,103] software, respectively, along with the relaxation 
time approximation and available electrical and thermal conductivity data extracted from 
literature. An example of the effectiveness of this approach for U and Zr is show in Figure 6 [97].  
We expect to focus on a limited set of transmutation products as noted at the outset of this task 
but span all the relevant first wall materials (i.e, W, each sublattice in SiC, and three compositions 
of Fe-Cr). As well, our results will be compared to existing calculations and experiments [104-
106]. 
Elastic constants ( ): We will use DFT calculations to update the values of the elastic constants 

 with chemical inventory composition by evaluating the change in the total energy per unit 
volume /Ω) of a system subjected to a general deformation: /Ω  = ½ , where Ω is the 
volume of the unit cell,  is the elasticity tensor, and  are the engineering strain vectors. Other 
elastic properties of interest, such as the bulk and shear moduli or Poisson’s ratio, will be directly 
extracted from  to be used in Level 2 and 3 simulations. The elastic properties of isotropic 
polycrystalline materials will also be determined by using the Hill average and the Voigt and 
Reuss bounds with complementary MD simulations. 
Thermal expansion coefficients ( ): CTE will be obtained for all materials by performing MD 
simulations under the isobaric-isothermal ( ) ensemble. The simulations will be conducted at 
different temperatures using simulation cells sufficiently large to capture representative chemical 
compositions due to transmutation as a function of burnup. While maintaining a zero-pressure 
condition, the converged (steady state) value of the cell volume will be recorded and the CTE will 
be obtained as  —where  is the relaxed cell volume at 0 K— from a set of 

independent constant-temperature simulations [107]. 
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Figure 6: Selected examples of thermal properties calculated using the proposed framework including (a) 

resistivity, (b) phonon thermal conductivity, and (c) total thermal conductivity for -U and -Zr [97]. 
3.3.5 The role of transmutation induced segregation on grain boundary sinks (Task 1.5) 

In certain materials, transmutation products will have an energetic preference to segregate to 
grain boundaries (e.g., Re/Os in W [108-110]) rather than stay as crystal solutes. This has two 
implications. First, the preferential diffusion of transmutation products to the grain boundaries 
(GB) can influence the surviving defect distribution within the lattice, particularly when they bind 
to impurities species.  Second, the preferential occupation of grain boundary sites by 
transmutation products can impact their sink strength relative to the pristine grain boundary 
distribution.  With the first mechanism addressed through the analysis of the binding energies of 
different defects to impurity species under Section 3.1.3, the effect of transmutation-induced 
grain boundary segregation on the interaction with radiation induced point defects and defect 
clusters will be quantified under this task.   
For each of the first wall materials, the propensity for different transmutation impurities to 
segregate to grain boundaries system will be quantified using a simulated polycrystalline 
structure with random texture constructed using a Voronoi tessellation procedure [111].  Impurity 
atoms will be introduced by randomly substituting host atoms on the crystalline lattice, and the 
hybrid molecular dynamics/Monte Carlo (MD/MC) approach [112] will be used to achieve energy 
minimized structures with respect to structural relaxations, thermal vibrations, and chemical 
mixing.  In cases where segregation of transmutation products is identified, simplified bicrystal 
grain structures with coincident site lattice (CSL) boundaries containing systematic variations in 
their energy, degree of symmetry, and excess free volume will be constructed and energy 
minimized to produce different extents of grain boundary segregation. Changes in the sink 
strength will be assessed by updating the capture efficiency of the GB over time, which can be 
expressed as the ratio of the lifetime of SIA and vacancy defects near a pristine GB relative to 
that of a solute-segregated GB [113-116]. The updated capture efficiencies will be used to inform 
our mesoscale irradiation models described in Section 3.4.1. A similar approach will be 
undertaken to calculate the interfacial rate constants needed for the tritium retention model in 
Section 3.4.3. 
 

3.4 Level 2: Microstructural evolution models and the ‘micron’ scale 
This level consists of a centralized irradiation damage module that takes information from Level 
1 and feeds into three microstructural evolution submodels: 
I. Irradiation hardening and creep: these phenomena define the lower and upper temperature 

operating window of structural materials, respectively [117,118]. We will develop a 
dislocation-density-based Crystal Plasticity (CP) model that accounts for both phenomena, 
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whose state variables are taken from the centralized irradiation damage module, and that 
feeds back to that module in order to capture dislocation-irradiation defects interactions. 

II. Grain growth and recrystallization: Tungsten is known to undergo recrystallization/grain 
growth (RX/GG) at critical combinations of irradiation dose and temperatures [119-125]. 
These processes must too be captured at the microstructural level, over grain-size scales. 
Here, we will develop a RX/GG model for polycrystalline W that reflects the operational 
conditions of a fusion reactor. 

III. Tritium transport and retention: tritium can be directly implanted at small depths into the 
plasma-facing wall and is produced directly in the breeding zone behind it.  This tritium can 
migrate throughout the structure (and into the coolant) via diffusion but will be retained at 
trap sites with a density and energy dependent on the density and type of defects induced 
by plasma exposure and neutron irradiation. 

 
3.4.1 Centralized irradiation damage module (Task 2.1) 
 Fusion environments present a tremendous challenge in terms of irradiation damage 
accumulation models for three main reasons: (1) the existence of multiple defect and 
transmutation species during irradiation under fusion conditions leads to the exponential growth 
of coupled ordinary differential equations (ODE), which makes standard (deterministic) rate 
theory models impractical from a computational standpoint [126,127]; (2) ODE systems 
representing irradiation species accumulation in fusion environments are strongly coupled (all 
defects react with one another), leading to dense coefficient matrices that are significantly more 
costly to solve by direct methods than sparse systems [128,129]; and (3) these ODE systems are 

intrinsically stiff due to the 
large intrinsic variability of time 
scales representing each 
defect type. This led to the 
development of the Stochastic 
Cluster Dynamics (SCD) model 
[130,131], which avoids these 
limitations by casting the 
standard ODE system into a 
set of stochastic differential 
equations that can be solved 
using the residence-time 
algorithm [132]. For these 
reasons, SCD will be the 
irradiation damage simulation 
module of choice used in Level 
2. In this project, we will 
consider vacancies, self-
interstitial atoms, He atoms, H 
atoms, and the main 
transmutant elements in each 
material, identified in Section 
3.1.1. Nonetheless, SCD will 
require computational 
developments to scale on large 
unstructured meshes. To that 
end, (i) we will consider 

Figure 7: Internal arrangement of efforts for Level 2. Information 
from Level 1 into Level 2 is parsed by a common submodule based 

on the stochastic cluster dynamics code (SCD), which simulates 
the evolution of irradiation damage accumulation at a material 

point. The three microstructure submodules receive information 
directly from SCD, and are thus synchronized in time by the 

common input they receive. 
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machine learning-assisted evolution approaches for defect size predictions to accelerate SCD, 
as ThermChem-FW team members from PNNL have done to predict grain structures in metallic 
nuclear fuels [133], and (ii) we will explore parallel synchronization strategies between SCD and 
deterministic solvers following similar work done by UCLA [134,135]. 
The irradiation damage module sits atop and is common to the three microstructural models. 
This centralized approach achieves two important features. First, it connects all microstructural 
evolution (as modeled by submodels I-III) by providing common information to all four 
submodels, which  makes them mutually consistent. Second, the irradiation module itself 
becomes updated by results furnished on the fly by the submodels, such that they all evolve in 
sync as dictated by microstructural change predictions. In particular, the following parameters 
of the SCD simulations will be updated on the fly (i) dislocation densities furnished from 
submodel I (irradiation hardening and creep) as evolving sinks for defects; (ii) grain size and grain 
boundary misorientations from submodel II to define sink strengths for defects; and (iii) tritium 
concentration profiles from submodel III to inform SCD distributions of vacancy-tritium clusters. 
This substructure and coupling of models in Level 2 is shown schematically in Figure 7. A 
technical description of each submodule follows. 
 

3.4.2 Irradiation hardening and creep (submodel I, Task 2.2) 
The irradiation hardening and creep model implemented at Level 2 is a dislocation-based 
polycrystalline crystal plasticity (PX-CP) model for irradiated bcc materials.  The model follows 
recent developments done by the Miami and UCLA PIs [136] and is based on prior work by Patra 
and McDowell [137]. The model receives irradiation defect densities directly from SCD as 
described above and is connected to the grain growth and recrystallization module proposed in 
Section 3.4.2 by considering the effects of grain boundaries and the evolving grain 
microstructure. In particular, given a certain grain size distribution, we will render a periodic 
polycrystalline grain microstructure/texture to be used as the representative volume element 
(RVE) for hardening/creep simulations. Internally, a dispersed barrier model will be used to 
compute the athermal slip resistance on each slip system [138], as done in past works [139]. The 
dispersed barrier model includes contributions from the irradiation defects number densities and 
sizes computed by the SCD module, long-range contributions from dislocations and grain-
boundary pileus, as well as the Peierls stress contribution proper of bcc metals. Preliminary 
hardening calculations based on a similar plasticity model coupled to SCD, as well as 
comparison to experiments [140], are reported in Figure 8. 
 

 
Figure 8: (a) Spatial distribution of irradiation hardening parameter. (b) Model comparison with 

experiments in irradiated W [140]. (c) Temperature dependence of the yield strength in pure W compared 
to experiments [141-143]. 
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3.4.3 Grain growth model (submodel II, Task 2.3)
The RX/GG model builds on methods previously developed by the PI and others [144,145]. Grain 
boundary dynamics follows a linear viscous law such as: , where is the grain boundary 
(GB) velocity, is the mobility, and includes all the driving forces conducive to GB motion. 
Under the coupled effects of temperature and irradiation, grain boundaries can move due to 
curvature, differential plastic strain energy, and differential irradiation damage energy, i.e.:

(2)
where is the GB energy, its curvature, is the material’s shear modulus, is the Burgers 
vector’s modulus, and is the dislocation density difference across the GB (resulting from 
plastic slip processes). The last term is the defect energy difference across the GB due to 
irradiation damage accumulation, which for each grain can be calculated as:

(3)

refers to the nature of the defects (vacancies, SIA, He or H clusters, transmutant atoms, etc.), 
is the concentration of species , is the size of the cluster, and gives the energy of a 

cluster as a function of . Here, we will use , where is a constant. 

Figure 9: (Left) Schematic stress-strain curve for polycrystalline Fe. (Center) dislocation density buildup 
at the end of the deformation stage). (Right) Activation of grain boundaries at the critical temperature, 

leading to grain growth (from [144]).

Preliminary results for mechanically loaded Fe polycrystals are shown in Figure 9, where the 
connection between external stimuli (tensile loading in this case), the onset of a nonequilibrium 
metastable state (due to differential dislocation density buildup), and microstructural evolution 
(grain growth in that case) can be seen. Defect concentrations and sizes will be passed to the 
RX/GG model by the SCD module in ‘real time’, as well as dislocation densities from the plastic 
deformation module (see 3.2.1). , , and will be considered to be time-dependent 
parameters extracted from Level 1 at the atomic scale (Section 3.1). The RX/GG model will 
update the polycrystalline structure (grain shapes and sizes) to be passed to the higher scale 
(Level 3). Additionally, we will seek to explore the effect of selected dopants (primarily K) and 
transmutants (Re and Os) [123] on the predicted critical RX/GG temperatures at each irradiation 
dose point. Validation of the model will be sought by comparing against recent experimental 
results of grain growth in pristine and doped irradiated W-Re alloys [125].

3.4.4 Tritium transport and retention model (submodel III, Task 2.4)
To capture tritium transport, we will implement a standard diffusion/trapping model [146].  The 
concentration of mobile tritium is obtained by solving a diffusion equation:

(4)
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where  is the diffusion coefficient,  is temperature,  is the universal gas constant, and  is 
the Ludwig-Soret coefficient. On the right-hand side,  is the local source or production rate, 
and  is the concentration of tritium in trap . Traps are associated with defect sites, and 
irradiation can create higher energy traps as well as an increased trap site density, with 
potentially significant implications for tritium retention and inventory. In this project, the trap 
concentrations (vacancy clusters, He/H bubbles) will be furnished directly by SCD, as indicated 
in Figure 7. At material/coolant interfaces, the net tritium flux  is given by the difference in 
competing dissociation and recombination rates, , where  is the partial pressure 
of tritium in the coolant, and  and  are the dissociation and recombination rate constants, 
respectively.   and  both have an Arrhenius form and will be obtained from calculations as 
described in Section 3.1.5. Diffusion and Ludwig-Soret coefficients will also be obtained from 
Level 1 models. The source term on the plasma side will be defined as part of our collaboration 
with the future PMI-Scidac proposal selected for funding in this FOA (see details in Section 4.3). 
 
 

3.5 Level 3: Full component thermomechanical simulations and integration of 
computational methodologies 
 

The primary objective of the efforts at this level is to develop tools to predict the thermo-
mechanical response at the component-level, integrating the mesoscale materials models with 
spatial resolution and time dependance. We will conduct full-component FEM simulations using 
the geometry provided in Figure 2 for the FW-B structure using FNSF-like conditions [5,16] to 
predict the integrity of the materials elements over time. Capabilities in multiple areas are needed 
to achieve this goal, as outlined below. MOOSE [147] will be used here as the component-scale 
multiphysics simulation tool, so these developments will be focused on expanding and improving 
upon the multiscale simulation capabilities in MOOSE and their interoperability with other tools. 
FEM simulations will use time-dependent material properties (elastic constants, thermal 
conductivities, and coefficients of thermal expansion) that reflect the evolving microstructure and 
material chemistry.   
 

3.5.1 Interfaces between MOOSE and mesoscale models (Task 3.1) 
 

A robust and flexible capability for capturing the physical behavior predicted by mesoscale 
models in component-level simulations is critical for the proposed multiscale simulation effort. A 
variety of physical phenomena will be considered in these mesoscale models, each with its 
unique features. To address the unique needs of each model type, support for the following 
types of multiscale coupling will be developed and applied in this project:  
1. Closed-form expressions that represent the behavior of the lower-scale, high-fidelity physics 

models will be developed in cases where the predicted behavior has an obvious analytical 
form. This approach is typically most feasible when there are small numbers of inputs and 
outputs in the analytic reduced order model (ROM) and limited or no history dependence. 
Even when the model form is clear, obtaining the appropriate coefficients to calibrate those 
models can require significant effort, and the existing capability in the stochastic tools 
module (STM) [148] in MOOSE will be used to execute the lower-scale models and obtain 
optimal coefficients.   

2. For constitutive relationships for which an analytical form is complex and the high-fidelity 
physics models are computationally expensive, neural network (NN)-based representations 
of the model are attractive alternatives. The NN-based ROMs can be directly used in the 
component-level simulation in place of the corresponding high-fidelity material models. This 
approach is particularly attractive for material models whose ROM is well-tested externally 
and/or the corresponding high-fidelity model is not compatible with MOOSE.  
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3. Finally, the component-level model can directly execute the high-fidelity model to obtain the 
response for material points in the component-scale model.  This approach is generally most 
attractive for high-fidelity models with relatively low computational costs. A NN-based ROMs 
that represents the high-fidelity model can be used to accelerate that model by being used 
as a predictor for its solution. This indirect use of the ROM within MOOSE requires that the 
high-fidelity model is either a part of MOOSE or can communicate residual information with 
the ROM that is being used to represent it.   

The integration of the three model interfaces just discussed is shown in Figure 7. A diagram of 
the ROM development and integration is shown in Figure 10.  

 

Figure 10. Integration of externally trained ROM in MOOSE. (a) Schematic of the ROM creation and its 
integration into MOOSE. (b) A crystal plasticity ROM represented by a fully connected NN that is 

successfully deployed in MOOSE. (c) Comparison between the ROM prediction and the ground-truth 
solution from the high-fidelity physics model. 

 

An initial study has been carried out to demonstrate the successful deployment of an externally 
trained ROM within MOOSE. This project will further enhance this capability to ensure the 
success of having multiple externally trained ROMs work well together in MOOSE. Specifically, 
detailed standards for the ROM creation (e.g., structure, required package) will be discussed, 
documented, and distributed to collaborators upfront to avoid any potential compatibility issues. 
Meanwhile, a robust and versatile interface will be built within MOOSE to accommodate all 
possible ROMs needed for this project, which will come from a variety of codes, represent 
distinct constitutive relations, and operate on a variety of spatial and temporal scales. As 
described in the following sections, approaches to improve multiple aspects of the efficiency 
and accuracy of the NN-based ROMs used in the direct and indirect approaches will be 
developed in addition to the foundational support for multiscale coupling. 
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3.5.2 System for continuous online updating of reduced order models (Task 3.2) 
Both the direct and indirect ROM approaches described in items 2 and 3 in the previous section 
will benefit from continuous improvement by providing updated data in the regimes for which 
they are applied. To continuously improve the ROMs, a recurrent training capability will be 
developed.Here, recurrent training refers to an online training process that utilizes information 
obtained during the ROM’s application to improve its performance. To achieve this goal, an 
additional NN will be trained to provide corrections to the ROM’s predicted response. This 
correction model takes the same input as the ROM (e.g., strain, flux, irradiation dose, etc.) and 
predicts the difference between the ROM prediction and the ground-truth response. The 
predicted correction is then added to the ROM prediction and acts as a final prediction. A 
diagram of this approach is shown in Figure 11. Despite the continuous training of the correction 
model as the ROM is being evaluated, updating the correction model for actual use will be 
infrequent. This is to avoid any potential instabilities that may be caused by the sudden change 
of the correction model. In this project, a tool for automating this online training, evaluation, and 
staging process will be developed in MOOSE. Note that this recurrent training capability will also 

need frequent forward 
evaluations of the 
material constitutive 
relation, which will 

require 
communication 

between MOOSE and 
the high-fidelity 
material constitutive 
relation. 

 
 

 

3.5.3 Synchronous interaction between MOOSE and external applications (Task 3.3) 
 

For instances when the codes used by the high-fidelity physics models for lower length-scale 
simulations are not based on MOOSE or readily able to be modified to be called by a MOOSE 
model, we will develop a web-interface-based capability for communication between MOOSE 
and that application. This will allow information flow from MOOSE to external applications and 
vice versa in a synchronized way, without the need to directly link the applications to MOOSE. 
This interface could be used to enhance reduced-order models derived from mesoscale 
simulations on the fly based on feedback from the component-based simulations. It can also 
enable the on-the-fly training of reduced-order models within external applications based on 
results and residuals inside the MOOSE component-level model. 
 

3.5.4 GPU-accelerated machine-learning models in MOOSE (Task 3.4) 
The scientific machine learning capabilities in MOOSE heavily rely on the open-source C++ front 
end (Libtorch) of PyTorch [149]. The current implementation is based on the CPU-based version 
of Libtorch and leverages the message-passing interface (MPI) for training NNs in parallel. The 
application of NNs for replacing computationally expensive material model evaluations on the 
meso- and component-scales is currently limited by the evaluation speed of the NNs, which can 
potentially be very large. Convolutional NNs connecting grain structures with material properties 
are a good example of NNs whose evaluation can be expensive. Another application of NNs is 
to use them as predictors for reducing iteration counts in complex material models. However, 

Figure 11: Schematic of the correction model for improving ROM 
performance. 
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this is only viable if the NNs can be evaluated rapidly. Libtorch has native support of GPU 
resources for the training and handling of a wide variety of NNs, which would be very beneficial 
for these demanding applications. GPUs are well suited for the evaluation and training of NNs 
due to their capability of tremendously accelerating dense matrix-vector operations. For this 
reason, we propose to develop interfaces and algorithms in MOOSE, which are able to 
seamlessly utilize GPU resources when available and fallback to CPU resources, when 
necessary, while managing NN-based material model evaluations. To the extent possible, these 
interfaces will abstract hardware details from the programming interface, allowing application 
developers to readily make use of the most advanced and appropriate hardware on a given 
machine. Additionally, the ability to force the selection of specific hardware will be made 
available for the purposes of drawing both speed and accuracy comparisons, troubleshooting, 
and other research-related purposes. 
 
 

4. Management Plan and Timetable of Activities 
4.1 Management structure 
As indicated earlier, this project is structured as an assembly of three spatiotemporal levels 
connected through bidirectional information channels, each including both materials physics and 
computational/applied math subactivities. Level 1 (the materials level) encompasses physical 
information at the atomic scale and will be coordinated by Trelewicz (Stony Brook), with 
contributions from Szlufarska (Wisconsin), Setyawan (PNNL), Cusentino and Sargsyan (SNL), 
and Cereceda (Villanova). Information from Level 1 will be passed to Level 2, which will capture 
the microstructural scales (microns, milliseconds) through suitably developed mesoscale 
models. This level will be coordinated by Marian (UCLA), with contributions from Po (Miami) and 
Humrickhouse (ORNL). Information from Level 2 will be passed to Level 3, which will be defined 
by large-scale, component-level, finite element simulations to be carried out by Permann and 
Spencer (INL). Key personnel will be designated as liaisons between the different levels to ensure 
an efficient and accurate transfer of information. Trelewicz (Stony Brook) and Marian (UCLA) will 
oversee the connection between Levels 1 and 2, while Bernholdt (ORNL) and Po (Miami) will act 
as liaisons between Levels 2 and 3, while Bernholdt (ORNL), Spencer (INL), and Po (Miami) will 
also assist the team in the optimization of algorithms, parallel scalability, development of 
software interfaces, and overall methodology implementation. The variability of material 
properties due to uncertainties in density functional theory (DFT) calculations and experimental 
databases used to fit the interatomic potentials, and their effect upstream into the intermediate 
and top levels, will be assessed by Sargsyan (SNL: member of FastMath). The project director 
(Marian, UCLA) will be responsible for managing all tasks and activities within this proposal, with 
assistance from Trelewicz (Stony Brook) as deputy director, and Bernholdt (ORNL) as project 
manager. Figure 1 also contains an overall picture of the project’s management structure, 
emphasizing the different connecting blocks and researcher attributions. 
 

The team will hold bi-weekly progress meetings via Zoom, where preference will be given to 
students and postdocs to present their progress. As well, a ThermChem-FW ‘retreat’ will be 
organized yearly by one of the institutional PIs for the team to convene in-person and discuss 
results, progress, and team member productivity and well-being. 
In case of a successful award, the project PI (Marian) will receive four quarters of teaching relief 
(one per academic year) from UCLA’s School of Engineering so that he can devote the majority 
of his time to the performance of his technical and managerial duties under the ThermChem-FW 
project. 
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4.2 Proposal team 
The team assembled to put the above plan into effect consists of a blend of computational 
materials scientists (‘Mat Sci’) and applied math/computer scientists (‘Comp Sci’) working in an 
integrated fashion. As Figure 1 shows, every level of the management structure will contain a 
mixture of both. At Level 1, Sargsyan (Comp Sci, member of FastMath) will be deploying 
advanced UQ tools to assess uncertainties in the properties calculated by Trelewicz, Szlufarska, 
Setyawan, and Cereceda by way of the interatomic potentials developed by Cusentino (Mat Sci). 
At Level 2, Marian and Humrickhouse (both Mat Sci) will be developing mesoscale models aided 
by Po (Mat/Comp Sci) and Bernholdt (Comp Sci). Lastly, Level 3 will involve work by Spencer 
(Mat/Comp Sci) and Permann (Comp Sci). As importantly, executive direction will be provided 
and shared by Marian (Mat Sci), Trelewicz (Mat Sci), and Bernholdt (Comp Sci).  
 

4.3 Collaborations and connection to other FES/Scidac efforts 
The present proposal concerns specific elements of the integrated fusion reactor structure, 
which makes it of interest to other fusion engineering and design efforts. We will work with other 
funded FES/SciDAC centers focused on plasma-materials interactions to define appropriate 
boundary conditions for our component-level simulations (Level 3). These will include helium and 
hydrogen isotope fluxes originating from the plasma edge, loss of thermal conductivity due to 
amorphization and/or fuss formation in the outermost layer of the W armor plates, and buildup 
of damage energy for grain growth and recrystallization simulations. Several ThermChem-FW 
team members, as of the application submission deadline, are part of the PSI2 project [150] 
(which is also responding to this FOA as “PMI-SciDAC”) and will ensure a seamless coordination 
with our project. Joint participation by members of our team in this and other DOE-relevant 
programs are listed next: 

SciDAC-5 Institutes FastMath: Frameworks, Algorithms, 
and Scalable Technologies for 
Mathematics 

Sargsyan (SNL) [151] 

FES/SciDAC 
Projects 

PSI2: Predicting the Performance 
and Impact of Dynamic PFC Surfaces  

Marian (UCLA), Cusentino 
(SNL), Setyawan (PNNL), 
Bernholdt (ORNL) 

[152] 

AToM: Advanced Tokamak Modeling 
Environment 

Bernholdt (ORNL) [153] 

NE/SciDAC 
Projects 

Simulation of Fission Gas in Uranium 
Oxide Nuclear Fuel 1 

Permann (INL), Bernholdt 
(ORNL) 

[154] 

Other DOE-funded 
advanced 
simulation efforts  

NEAMS: Nuclear Energy Advanced 
Modeling and Simulation 

Permann (INL), Spencer 
(INL) 

[155] 

 

As well, a collaboration with ORNL’s base fusion materials program led by Dr Yutai Katoh will be 
established to take advantage of the Japan-US collaboration to update the material properties 
handbook for F82H RAFM, particularly heavy-ion irradiation data up to 80 dpa [156]. Building on 

 
1 This project officially ended in FY22 but it continues to support a number of final activities with carryover 
funds. 
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this, we will interface with the “Advance Castable Nanostructured Alloys for First Wall/Blanket 
Applications” project [157], which focuses on building engineering databases for certain types 
of castable nanostructured alloys (CNA) [158] under the umbrella of the GAMOW effort [159]. 
These CNA are being developed as a new class of RAFM steels based on carbide-strengthened 
nanostructured alloys with the intent to demonstrate the viability of industry-scale CNA 
production. The scope of the collaboration will be to use CNA property data in our models for 
what we envision to potentially become the US reference RAFM steel for first wall and blanket 
components. The project is led by Dr Ying Yang at ORNL. A joint collaboration letter from ORNL 
program leader Katoh is attached to Appendix 6 at the end of this proposal.  
 

Finally, the methods and models developed in this proposal will also be of interest to private 
fusion industry stakeholders to test and evaluate the performance of their FPP concepts under 
realistic operational scenarios. Here, we will partner with Commonwealth Fusion Systems (CFS) 
to deploy our integrated thermomechanical evolution prediction tools to their FPP design 
‘SPARC’ [160]. A collaboration letter from CFS’ Fusion Materials Lead Dr Cody Dennett is also 
attached to Appendix 6 at the end of the proposal. 
 

4.4 Timeline of milestones and deliverables 
A Gantt chart with the milestones and deliverables of the project is shown below. Milestones and 
deliverables are labeled as ‘L[X]-M[Y]’, where [X] refers to the Level they pertain to (1, 2 or 3) and 
[Y] is the internal task counter within each level. The main institutions involved in each task are 
highlighted in bold letters at the end of each bullet.  
 

L1-M1. Creation of the neutronics model of the reference component geometry using 
MCNP6.2 and DAGMC  (ORNL). 

L1-M2. Calculation of nuclide sequences for the three candidate materials under the expected 
conditions of FNSF  (Villanova). 

L1-M3. Development of ML-IAP for first wall components focused on capturing chemical 
composition changes due to transmutation  (SNL). 

L1-M4. Estimation and propagation of uncertainties in the development and use of ML-IAP  
(SNL).  

L1-M5. Calculation of PKA energy distributions as a function of burnup using SPECTRA-PKA 
 (Villanova, UCLA).  

L1-M6. Calculation of irradiation defect cluster diffusivity using DFT, ML-IAP, and lattice kMC 
in all materials of interest  (PNNL, UW, Stony Brook). 

L1-M7. Calculation of binding energies of irradiation defect clusters to selected transmutants 
using DFT and ML-IAP in all materials of interest  (UW, Stony Brook, PNNL,). 

L1-M8. Calculation of binding energies of He, vacancies, and transmutation products to the 
He-V clusters (PNNL, Stony Brook). 

L1-M9. Calculation of the thermal conductivities and elastic constants as a function of evolving 
chemistry due to transmutation in all three materials of interest using the coupled DFT, 
MD, and BTE approach  (UW, Stony Brook, Villanova).  

L1-M10. Calculation of GB defect absorption efficiencies as a function of evolving chemistry 
due to transmutation using MD simulations based on MKL-IAP  (Stony Brook ,UW). 

L1-M11. Determination of tritium absorption/dissociation coefficients in FW-B interfaces  
(Stony Brook, ORNL). 

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

L2-M1. Adaptation of SCD code to large scale unstructured meshes via parallel 
synchronization approach  (UCLA, Miami). 

L2-M2. Development of the machine learning-assisted evolution model for defect size 
predictions in W, Fe-Cr, and SiC  (PNNL, UCLA). 
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L2-M3. Integrate machine learning evolution module with SCD code for irradiation damage 
module acceleration (PNNL, UCLA).

L2-M4. Development of hardening/creep model using PX-CP framework, benchmarked to 
available experimental data   (Miami).

L2-M5. Extension of GG-RX model to capture irradiation defect accumulation driving force  
(UCLA)

L2-M6. Simulations of grain growth under irradiation and estimation of critical RX 
temperatures (UCLA).

L2-M7. Development of tritium transport/retention model (ORNL).
_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

L3-M1. Demonstrate use of GPU acceleration for evaluating neural network-based reduced 
order models within MOOSE (INL).

L3-M2. Demonstrate use of web-interface-based capability for interacting with an external 
code that provides a high-fidelity model to compute quantities relevant for 
component-scale simulations (INL, Miami, ORNL).

L3-M3. Demonstrate system for continuous online updating to improve fidelity of reduced 
order models (INL, Miami).

L3-M4. Demonstrate component-level simulations of first wall/blanket and divertor structures 
using mesoscale-informed constitutive models (INL, ORNL, Miami, UCLA).
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